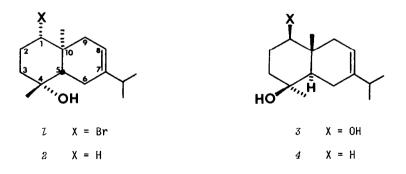
Tetrahedron Letters No. 34, pp 2935 - 2938, 1977. Pergamon Press. Printed in Great Britain.


## MARINE NATURAL PRODUCTS XIV. 1-S-BROMO-4-R-HYDROXYSELIN-7-ENE, A METABOLITE OF THE MARINE ALGA LAURENCIA SP.

Allan F. Rose and James J. Sims\* Department of Plant Pathology University of California, Riverside 92521

(Received in USA 28 April 1977; received in UK for publication 27 June 1977)

Investigations of marine red algae of the genus *Laurencia* have led to the isolation of a number of halogenated terpenes.<sup>1</sup> Continuation of our interest in *Laurencia sp.* from Australia has led to the isolation of a new brominated sesquiterpene (+)-1-S-bromo-4-*R*-hydroxyselin-7-ene, *l*.

Hexane extraction of the air dried alga, which was collected in Guerilla Bay, New South Wales, Australia, gave a dark green extract. Open column chromatography of the extract on silica gel gave, in addition to two previously unreported  $C_{15}$  eneyne compounds and elatol,<sup>2</sup> fraction A. High pressure liquid chromatography (Bio-Sil A, 8% ethyl acetate in hexanes, recycle mode) gave pure l, 42 mg (0.005%) as a viscous oil,  $[\alpha]_{D}$  +54.4° (c 1.35, CHCl<sub>3</sub>).



The mass spectrum of l displayed a molecular ion at m/e 300, 302,  $C_{15}H_{25}OBr$ , which in turn loses H<sub>2</sub>O (m/e 282, 284), H<sub>2</sub>O + CH<sub>3</sub> (m/e 267, 269) and H<sub>2</sub>O + Br (m/e 203). The molecular formula of l requires three sites of unsaturation. The carbon-13 (cmr) spectrum (ppm in CDCl<sub>3</sub>, TMS=O) reveals but one double bond (141.9, s, and 116.2, d) and no carbonyl absorption. Hence l is bicyclic. The pmr spectrum ( $\delta$  in CCl<sub>4</sub>, TMS=O) indicates the presence of two tertiary methyl groups (1.18, s, and 1.10, s), one of which is bonded to a carbon bearing oxygen, two methyl doublets (1.01, d, J=7Hz) and a one proton heptet (2.16, J=7Hz) characteristic of a vinyl isopropyl group, a doublet of doublets (3.98, J=12, 4Hz) indicative of an equatorial bromine and a vinyl proton (5.30, bd).

The lone oxygen atom is seen to be an alcohol by the ir band at 3500  ${\rm cm}^{-1}$  and cmr signal at 70.9. The tertiary nature of the alcohol is disclosed by the cmr off-resonance multiplicity (singlet) of this signal and by the failure of t to form an acetate with pyridine and acetic anhydride. Thus an ether linkage is excluded and the remaining ten carbons must be a carbobicyclic system. These ten carbons can be accommodated by a spiro [5.5], a bicyclo [5.3.0] or a bicyclo [4.4.0] system. An isoprenoid spiro [5.5] skeleton requires a cmr singlet near 54 ppm.<sup>3</sup> Since no such cmr signal is observed, the spiro system is eliminated. The bicyclo [5.3.0], exemplified by the carotane or pseudo-guiane skeleton, and the bicyclo [4.4.0], typified by the selinane or eremophilane skeleton, satisfy the pmr methyl group requirements. The carotane ring system is eliminated by a paramagnetic shift study (vide infra) which demonstrates the spatial proximity of the quatenary bridgehead methyl and the hydroxyl. The chemical shift of the bromomethine ( $\delta$  3.98) implies that it is not adjacent to an electronegative atom and hence, when considering the pseudo-guiane system, it must be placed on the 5-membered ring. However placement of the bromine on a 5-membered ring can not accommodate the observed coupling constants of 4 and 12 Hz. In 5-ring systems, vicinal coupling does not exceed 9 Hz.<sup>4</sup> The pseudo-guiane system is therefore eliminated.

Among the bicyclo [4.4.0] systems, the eremophilane skeleton can be eliminated by consideration of the bromomethine proton chemical shift ( $\delta$  3.98) and multiplicity (dd, J=4, 12Hz). It is not possible to place a tertiary hydroxyl and a bromine atom on this ring system and observe this chemical shift (*vide supra*) and multiplicity. The alternatives are now reduced to a *cis* fused (occidentalol skeleton) or *trans* fused (selinane skeleton) decalin. The cmr spectrum of l shows a high field methyl resonance (14.0 ppm). This signal is in agreement with the methyl chemical shift of *trans*-9-methyldecalin, 15.7 ppm, thereby excluding a *cis*-9-methyldecalin which has the angular methyl absorption at 28.2 ppm.<sup>5a,b</sup> The C-19 methyl resonance in steroids shows a similar shift to high field when the A/B ring juncture is *trans*.<sup>6</sup> Thus l can be assigned a selinane carbon skeleton.

The tertiary hydroxyl which is attached to a carbon bearing a methyl group requires it be attached at C-4. Support for this assignment was found in a contact shift study (*vide infra*). The allylic nature of the isopropyl methine places the olefinic bond at C-6,7 or C-7,8.

The relative sterochemistry of the C-4 hydroxyl and C-10 methyl groups is defined as follows. Treatment of l with excess lithium in ammonia gives a good yield of the debrominated alcohol, l,  $[\alpha]_D$  +57.6° (c 4.325, dioxane). A paramagnetic contact shift study  $[Eu(fod)_3]$  of compound l clearly shows a rapid downfield shift of the C-4 methyl group and that the C-4 hydroxyl and the C-10 methyl are proximally located. This defines the relative sterochemistry of the C-4 and C-10 methyl groups as *trans*. Hence l has the same relative sterochemistry at C-4,5 and 10 as oplidiol (3). The isopropyl methyl absorbance was not strongly influenced by the addition of the shift reagent and excludes the rare gorgonene<sup>7</sup> ring system. The olefinic linkage of l, and hence of l, was located at C-7,8, rather than C-6,7, because the vinyl proton was not coupled to a proton which was paramagnetically shifted.

The absolute sterochemistry of 2 was determined by comparison of spectral data with an oplodiol degradation product. Oxidation of oplidiol 3 followed by Hauang-Minlon reduction of the resulting ketoalcohol gave an oily alcohol 4 [ $\alpha$ ] -62.1° (c 0.715, dioxane).<sup>8</sup> The nearly equal but opposite sign of rotation indicates that 2 is enantiomeric to the oplodiol degradation product.

The configuration of the bromine in i was assigned as equatorial by comparison with a similarly located bromine in oppositol<sup>9</sup> and Irieol A.<sup>10</sup> This assignment is supported by the appearance of the bromomethine proton as a doublet of doublets,  $\delta$  3.98, J=4, 12Hz. If the bromine were axial then molecular models suggest that the bromomethine signal should be a triplet because this proton bisects the angle of the adjacent methylene protons. Thus the absolute sterochemistry is as shown in z.<sup>11</sup>

Cmr chemical shift assignments are given in Table 1.

Table 1. CMR Chemical Shifts, ppm (TMS=0), CDCl<sub>2</sub>

| Cmpd | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C4Me | C10Me | C11Me                  |
|------|----|----|----|----|----|----|----|----|----|-----|-----|------|-------|------------------------|
|      |    |    |    |    |    |    |    |    |    |     |     |      |       | 21.8,21.2<br>21.9,21.3 |

Acknowledgements. This research was supported by the National Science Foundation under Grant No. CHE-74-13938. The use of the pmr facilities, University of California, San Diego, supported in part by the National Institute of Health, Grant No. RR-00708, and the technical assistance of Mr. Richard Freisen is gratefully acknowledged.

## References:

- (a) P. J. Scheuer, "Chemistry of Marine Natural Products," Academic Press, New York, N.Y., 1973. (b) W. Fenical, J. Phycol., <u>11</u>, 245 (1975).
- 2. J. J. Sims, G. H. Y. Lin and R. M. Wing, Tetrahedron Lett., 3487 (1974).
- (a) G. C. Levy, Ed., "Topics in Carbon-13 NMR Spectroscopy," Vol. 2, John Wiley and Sons, New York, N.Y., 1976, pp. 95-97. (b) D. Zimmermann, R. Ottinger, J. Reisse, H. Christol and J. Brugidou, Org. Magn. Resonance, <u>6</u>, 346 (1974). (c) Unpublished results.
- 4. S. Sternhell, Quart. Rev. (London), 23, 236 (1969).
- 5. (a) D. K. Dalling, D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., <u>95</u>, 3718 (1973).
  (b) W. A. Ayers, L. M. Browne, S. Fung and J. B. Stothers, Can. J. Chem., <u>54</u>, 3272 (1976).
- 6. H. Eggert and C. Djerassi, Tetrahedron Lett., 3635 (1975).
- (a) A. J. Weinheimer, P. H. Washecheck, D. van der Helm and M. B. Hossain, Chem. Commun., 1070 (1968).
   (b) M. B. Hossain and D. van der Helm, J. Amer. Chem. Soc., <u>90</u>, 6607 (1968).
- 8. H. Minato and M. Ishikawa, J. Chem. Soc., C, 423 (1967).
- 9. S. S. Hall, D. J. Faulkner, J. Fayos and J. Clardy, J. Amer. Chem. Soc., 95, 7187 (1973).
- 10. B. M. Howard and W. Fenical, Tetrahedron Lett., 1687 (1975).
- At the end of this research we became aware of an identical structure determined by W. Fenical and B. M. Howard. We are grateful for a preprint of their paper, J. Org. Chem., in press.